

Strategyproofness and Monotone Allocation of Auction in Social Networks

Yuhang Guo^{1,2}, Dong Hao¹, Bin Li³, Mingyu Xiao¹, Bakh
Khoussainov¹

¹University of Electronic Science and Technology of China

²University of New South Wales

³Nanjing University of Science and Technology

IJCAI 2025, Guangzhou China

Auction in Social Networks: Motivation

Classic Sealed-Bid Auction

Auction in Social Networks: Motivation

Classic Sealed-Bid Auction

- ▶ The auctioneer announces the sale information.

Auction in Social Networks: Motivation

Classic Sealed-Bid Auction

- ▶ The auctioneer announces the sale information.
- ▶ Informed bidders submit bids and compete for the items.

Auction in Social Networks: Motivation

Classic Sealed-Bid Auction

- ▶ The auctioneer announces the sale information.
- ▶ Informed bidders submit bids and compete for the items.
- ▶ The auctioneer determines who get the items (**allocation**), and how much for charge (**payment**).

Auction in Social Networks: Motivation

“An auction with $N + 1$ bidders has better revenue in expectation than any negotiation with N bidders.” [BK94]

Auction in Social Networks: Motivation

“An auction with $N + 1$ bidders has better revenue in expectation than any negotiation with N bidders.” [BK94]

A competitive market is more desirable!

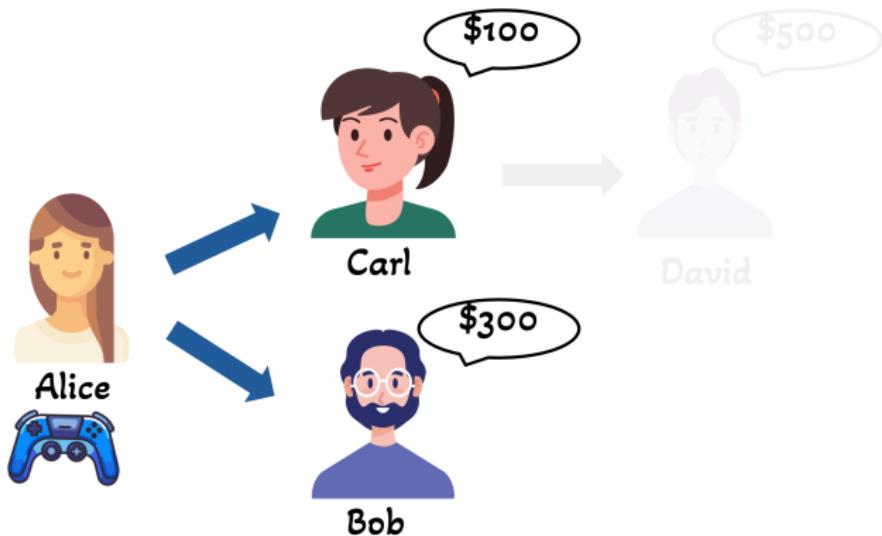
Auction in Social Networks: Motivation

“An auction with $N + 1$ bidders has better revenue in expectation than any negotiation with N bidders.” [BK94]

A competitive market is more desirable!

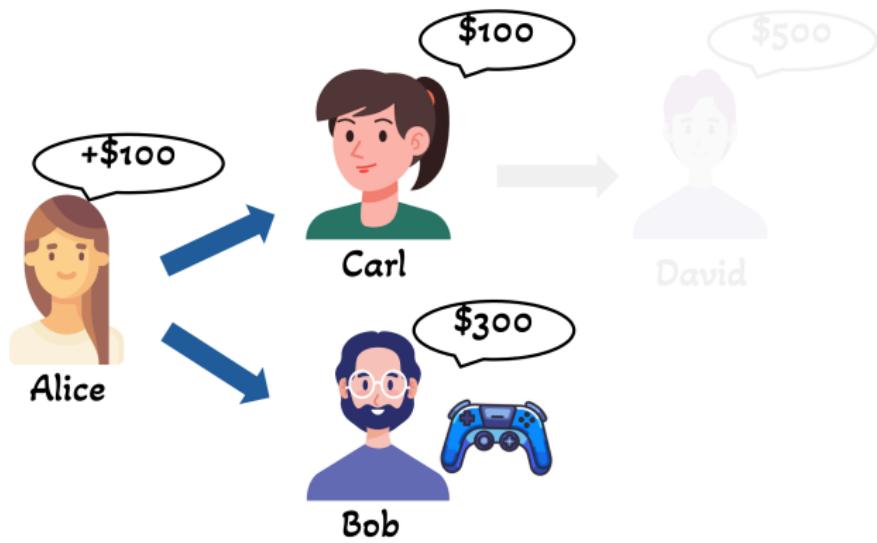
Incentivize bidders inviting new potential bidders via social interactions!

Auction in Social Networks: Model [LHZZ17]



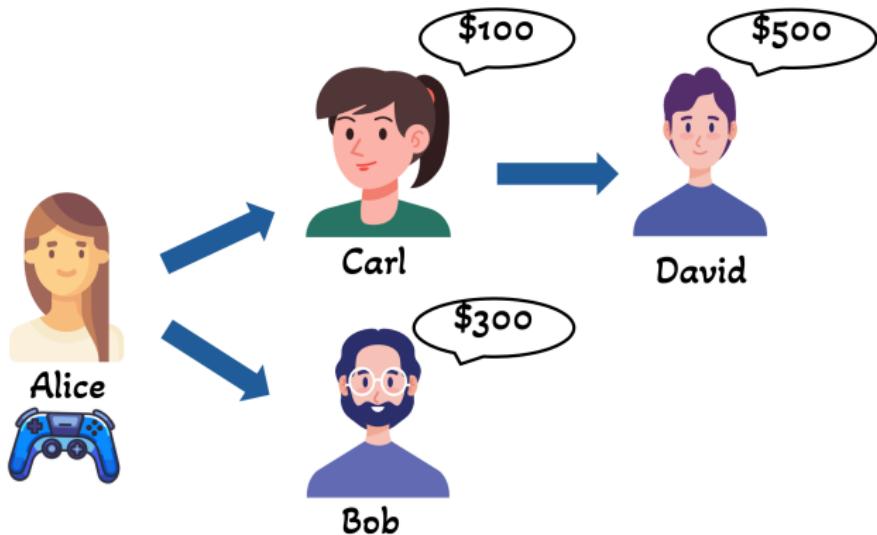
Auction with two bidders.

Auction in Social Networks: Model [LHZZ17]



Vickrey Auction

Auction in Social Networks: Model [LHZZ17]



Auction via Social Networks

Auction in Social Networks: Model [LHZZ17]

- ▶ Each bidder has **two-dimensional private information**: valuation and invitation set.

Auction in Social Networks: Model [LHZZ17]

- ▶ Each bidder has **two-dimensional private information**: valuation and invitation set.
- ▶ **Individual Rationality**: no deficit for bidders under truthful bidding.

Auction in Social Networks: Model [LHZZ17]

- ▶ Each bidder has **two-dimensional private information**: valuation and invitation set.
- ▶ **Individual Rationality**: no deficit for bidders under truthful bidding.
- ▶ **Strategyproofness**: truthfully reporting valuation and inviting all the neighbors is the dominate strategy.

Auction in Social Networks: Model [LHZZ17]

- ▶ Each bidder has **two-dimensional private information**: valuation and invitation set.
- ▶ **Individual Rationality**: no deficit for bidders under truthful bidding.
- ▶ **Strategyproofness**: truthfully reporting valuation and inviting all the neighbors is the dominate strategy.
- ▶ **Efficiency**: Allocation rules that maximize social welfare.

Auction in Social Networks: Model [LHZZ17]

- ▶ Each bidder has **two-dimensional private information**: valuation and invitation set.
- ▶ **Individual Rationality**: no deficit for bidders under truthful bidding.
- ▶ **Strategyproofness**: truthfully reporting valuation and inviting all the neighbors is the dominate strategy.
- ▶ **Efficiency**: Allocation rules that maximize social welfare.
- ▶ **Budget-balance**: no deficit for the seller.

Challenges

- ▶ (⌚) **Classic Sealed-Bid Auction**
single-item → multi-unit with unit demand.
Vickrey Auction!

Challenges

- ▶ (⊗) **Classic Sealed-Bid Auction**
single-item → multi-unit with unit demand.
Vickrey Auction!
- ▶ (⊗) **Auction in Social Networks**
single-item $\xrightarrow{?}$ multi-unit with unit demand.
Non-trivial!

Challenges

- ▶ (⊗) **Classic Sealed-Bid Auction**
single-item → multi-unit with unit demand.
Vickrey Auction!
- ▶ (⊗) **Auction in Social Networks**
single-item $\xrightarrow{?}$ multi-unit with unit demand.
Non-trivial!
- ▶ Some early works fail strategyproofness in multi-unit network auction with single-unit demand [[ZLX⁺18](#), [KBT⁺20](#)].

Challenges

- ▶ (⊗) **Classic Sealed-Bid Auction**
single-item → multi-unit with unit demand.
Vickrey Auction!
- ▶ (⊗) **Auction in Social Networks**
single-item $\xrightarrow{?}$ multi-unit with unit demand.
Non-trivial!
- ▶ Some early works fail strategyproofness in multi-unit network auction with single-unit demand [[ZLX⁺18](#), [KBT⁺20](#)].

Missing designing principles beyond single-item settings!

Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., single-item, multi-unit with unit demand, single-minded, ...)

Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., single-item, multi-unit with unit demand, single-minded, ...)

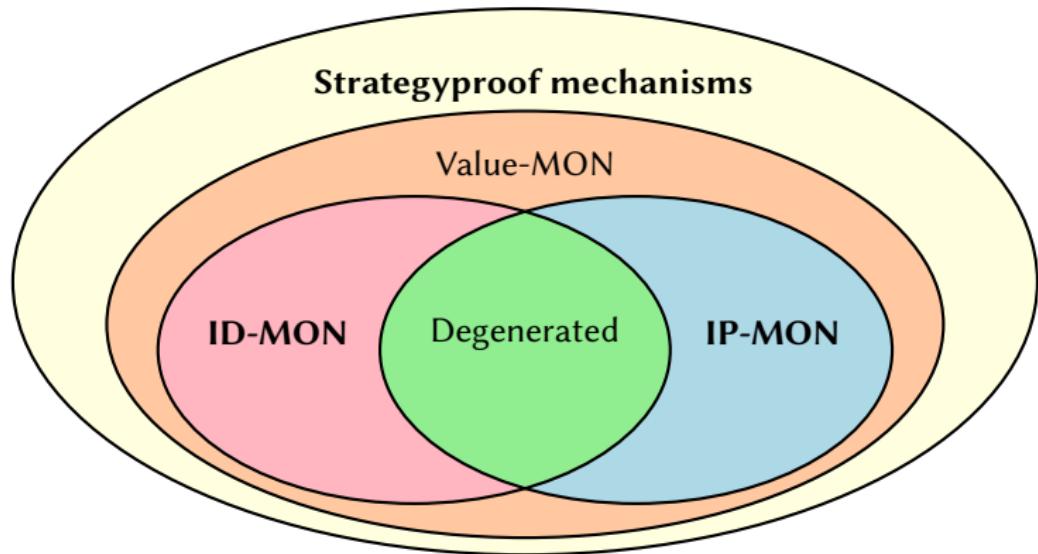
A characterization of **strategyproof** mechanisms with monotone allocations.

Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., **single-item, multi-unit with unit demand, single-minded, ...**)

A characterization of **strategyproof** mechanisms with monotone allocations.



Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., single-item, multi-unit with unit demand, single-minded, ...)

A characterization of **strategyproof** mechanisms with monotone allocations.

Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., **single-item, multi-unit with unit demand, single-minded, ...**)

A characterization of **strategyproof** mechanisms with monotone allocations.

- ▶ Two typical types of monotone allocation rules.
 - ▶ Invitation-Depressed Monotonicity (ID-MON).
 - ▶ Invitation-Promoted Monotonicity (IP-MON).

Our Results

We consider *0-1 deterministic* mechanisms with *single-parameterized valuation* bidders.

(E.g., **single-item, multi-unit with unit demand, single-minded, ...**)

A characterization of **strategyproof** mechanisms with monotone allocations.

- ▶ Two typical types of monotone allocation rules.
 - ▶ Invitation-Depressed Monotonicity (ID-MON).
 - ▶ Invitation-Promoted Monotonicity (IP-MON).
- ▶ Payment rules.
 - ▶ Revenue-maximization payment rules.
 - ▶ Solvable in polynomial time by binary search.

Our Results

Characterization is powerful!

Our Results

**Characterization is powerful!
ID/IP-MON allocations \Rightarrow strategyproof mechanisms.**

Our Results

Characterization is powerful!

ID/IP-MON allocations \Rightarrow strategyproof mechanisms.

- ▶ Revisit the DNA-MU mechanism [KBT⁺20] and fix the non-strategyproofness issue.
- ▶ Refine VCG mechanism and prove the revenue upper bound for efficient allocation.
- ▶ Mechanism design for network auction with single-minded bidders.

Thank you for your attention! Q & A

Poster Area 2 - Line F 27-42. (16:30 - 18:00)

- [BK94] Jeremy I Bulow and Paul D Klemperer. Auctions vs. negotiations, 1994.
- [KBT⁺20] Takehiro Kawasaki, Nathanaël Barrot, Seiji Takanashi, Taiki Todo, and Makoto Yokoo. Strategy-proof and non-wasteful multi-unit auction via social network. In *Proceedings of the aaai conference on artificial intelligence*, volume 34, pages 2062–2069, 2020.
- [LHZ20] Bin Li, Dong Hao, and Dengji Zhao. Incentive-compatible diffusion auctions. *arXiv preprint arXiv:2001.06975*, 2020.
- [LHZZ17] Bin Li, Dong Hao, Dengji Zhao, and Tao Zhou. Mechanism design in social networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 31, 2017.
- [Mye81] Roger B Myerson. Optimal auction design. *Mathematics of operations research*, 6(1):58–73, 1981.
- [ZLX⁺18] Dengji Zhao, Bin Li, Junping Xu, Dong Hao, and Nicholas R Jennings. Selling multiple items via social networks. In *Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems*, 2018.

Conference on Autonomous Agents and MultiAgent Systems, pages 68–76, 2018.

Auction in Social Networks: Model [LHZZ17]

- ▶ A set of N agents.
- ▶ A set of \mathcal{K} items.
- ▶ A market $G = (N \cup \{s\}, E)$ with seller s .
- ▶ Each agent i has private information $t_i = (v_i, r_i)$, where v_i : valuation; r_i : neighbor set $r_i = \{j \mid (i, j) \in E\}$.
- ▶ Mechanism $\mathcal{M} = (f, p)$ with allocation f and payment p .
- ▶ Quasi-linear utility function $u_i = f_i \cdot v_i - p_i$.
- ▶ **Social welfare:** $\text{SW}^{\mathcal{M}}(\mathbf{t}) = \sum_{i \in N} f_i \cdot v_i$.
- ▶ **Revenue:** $\text{Rev}^{\mathcal{M}}(\mathbf{t}) = \sum_{i \in N} p_i$.

¹Generated by Gemini2.5 Flash.

Axioms for strategyproofness

Myerson's Lemma [Mye81]

A mechanism $\mathcal{M} = (f, p)$ in a single-parameter domain is incentive compatible if and only if the following conditions hold:

- ▶ Allocation f is **value-monotonic**.
- ▶ Every winning bidder pays the **critical value**:

$$v^* = \inf_{v_i: f_i(v_i, v_{-i})=1} v_i$$

Axioms for strategyproofness

IC for Single-item Network Auction [LHZ20]

A mechanism $\mathcal{M} = (f, p)$ for single-item network auction is IC & IR if and only if the following conditions hold:

- ▶ Allocation f is **value-monotonic**.
- ▶ Decomposing payment as $p_i = f_i \tilde{p}_i + (1 - f_i) \bar{p}_i$. winning payment \tilde{p}_i and losing payment \bar{p}_i are **bid-independent**.
- ▶ Under truthful referral r_i , difference between \tilde{p}_i and \bar{p}_i is the **critical value**.

$$\tilde{p}(r_i) - \bar{p}(r_i) = v^*(r_i)$$

- ▶ Payment is **referral-monotonic**: $\forall r_i^1, r_i^2 \subseteq r_i, r_i^1 \subseteq r_i^2$,

$$\tilde{p}_i(r_i^1) \geq \tilde{p}_i(r_i^2).$$

Invitation-Depressed (ID) Monotonicity

Definition (Invitation-Depressed (ID) Partial Ordering $\succeq_{\mathcal{D}}$)

Given bidder i 's two types: $t_i^1 = (v_i^1, r_i^1)$ and $t_i^2 = (v_i^2, r_i^2)$, define $t_i^1 \succeq_{\mathcal{D}} t_i^2$ if $v_i^1 \geq v_i^2$ and $r_i^1 \subseteq r_i^2$.

Definition (Invitation-Depressed (ID) Monotonicity)

Given allocation f , if $f_i(t_i, \mathbf{t}'_{-i}) = 1$ implies $\forall t'_i \succeq_{\mathcal{D}} t_i, f_i(t'_i, \mathbf{t}'_{-i}) = 1$, then f is ID-MON.

Invitation-Depressed (ID) Monotonicity

Definition (Invitation-Depressed (ID) Partial Ordering $\succeq_{\mathcal{D}}$)

Given bidder i 's two types: $t_i^1 = (v_i^1, r_i^1)$ and $t_i^2 = (v_i^2, r_i^2)$, define $t_i^1 \succeq_{\mathcal{D}} t_i^2$ if $v_i^1 \geq v_i^2$ and $r_i^1 \subseteq r_i^2$.

Definition (Invitation-Depressed (ID) Monotonicity)

Given allocation f , if $f_i(t_i, \mathbf{t}'_{-i}) = 1$ implies $\forall t'_i \succeq_{\mathcal{D}} t_i, f_i(t'_i, \mathbf{t}'_{-i}) = 1$, then f is ID-MON.

Hint: Higher bid & fewer invitation \Rightarrow better allocation.

Invitation-Depressed (ID) Monotonicity

Theorem 1

Given any ID-MON allocation f , the payment rule

$$p^* = \{p_i^* = v_i^*(\emptyset) - (1 - f_i)v_i^*(r_i)\}_{i \in N}$$

maximizes the revenue and mechanism $\mathcal{M} = (f, p^*)$ is strategyproof.

Invitation-Promoted (IP) Monotonicity

Definition (Invitation-Promoted (IP) Partial Ordering $\succeq_{\mathcal{P}}$)

Given bidder i 's two types: $t_i^1 = (v_i^1, r_i^1)$ and $t_i^2 = (v_i^2, r_i^2)$, define $t_i^1 \succeq_{\mathcal{P}} t_i^2$ if $v_i^1 \geq v_i^2$ and $r_i^2 \subseteq r_i^1$.

Definition (Invitation-Promoted (IP) Monotonicity)

Given allocation f , if $f_i(t_i, \mathbf{t}'_{-i}) = 1$ implies $\forall t'_i \succeq_{\mathcal{P}} t_i, f_i(t'_i, \mathbf{t}'_{-i}) = 1$, then f is invitation-depressed monotone.

Invitation-Promoted (IP) Monotonicity

Definition (Invitation-Promoted (IP) Partial Ordering $\succeq_{\mathcal{P}}$)

Given bidder i 's two types: $t_i^1 = (v_i^1, r_i^1)$ and $t_i^2 = (v_i^2, r_i^2)$, define $t_i^1 \succeq_{\mathcal{P}} t_i^2$ if $v_i^1 \geq v_i^2$ and $r_i^2 \subseteq r_i^1$.

Definition (Invitation-Promoted (IP) Monotonicity)

Given allocation f , if $f_i(t_i, \mathbf{t}'_{-i}) = 1$ implies $\forall t'_i \succeq_{\mathcal{P}} t_i, f_i(t'_i, \mathbf{t}'_{-i}) = 1$, then f is invitation-depressed monotone.

Hint: Higher bid & more invitation \Rightarrow better allocation.

Invitation-Promoted (IP) Monotonicity

Definition (Invitation-Promoted (IP) Partial Ordering $\succeq_{\mathcal{P}}$)

Given bidder i 's two types: $t_i^1 = (v_i^1, r_i^1)$ and $t_i^2 = (v_i^2, r_i^2)$, define $t_i^1 \succeq_{\mathcal{P}} t_i^2$ if $v_i^1 \geq v_i^2$ and $r_i^2 \subseteq r_i^1$.

Definition (Invitation-Promoted (IP) Monotonicity)

Given allocation f , if $f_i(t_i, \mathbf{t}'_{-i}) = 1$ implies $\forall t'_i \succeq_{\mathcal{P}} t_i, f_i(t'_i, \mathbf{t}'_{-i}) = 1$, then f is IP-MON.

Invitation-Promoted (IP) Monotonicity

Theorem 2

Given one IP monotone allocation f , the payment rule

$$p^* = \{p_i^* = f_i v_i^*(r_i)\}_{i \in N}$$

maximizes the revenue and mechanism $\mathcal{M} = (f, p^*)$ is strategyproof.

Proof Sketch of Theorem 1

Revenue: $Rev^M = \sum_{i:f_i=1} \tilde{p}_i(r_i) + \sum_{i:f_i=0} \bar{p}_i(r_i)$

IC condition for critical value: $\tilde{p}_i(r_i) - \bar{p}_i(r_i) = v_i^*(r_i)$

Rewrite $Rev^M = \sum_{i \in W} v_i^*(r_i) + \sum_{i \in N} \bar{p}_i(r_i)$

Given an allocation, critical value is determined.

Optimize revenue \Rightarrow optimize $\bar{p}_i(r_i)$.

$$\max \bar{p}_i(r_i)$$

$$s.t. \tilde{p}_i(r_i) = \bar{p}_i(r_i) + v_i^*(r_i)$$

$$\forall r'_i \subseteq r_i, \tilde{p}_i(r_i) \leq \tilde{p}_i(r'_i)$$

$$\forall r'_i \subseteq r_i, \bar{p}_i(r_i) \leq \bar{p}_i(r'_i)$$

$$v_i^*(r_i) \geq v_i^*(r'_i) \geq \dots \geq v_i^*(\emptyset) \text{ (ID-MON)}$$

$$\bar{p}_i(\emptyset) \leq 0$$

Solution:

$$\tilde{p}_i(r_i) = v_i^*(\emptyset)$$

$$\bar{p}_i(r_i) = v_i^*(\emptyset) - v_i^*(r_i)$$

Proof Sketch of Theorem 2

Revenue: $Rev^M = \sum_{i:f_i=1} \tilde{p}_i(r_i) + \sum_{i:f_i=0} \bar{p}_i(r_i)$

IC condition for critical value: $\tilde{p}_i(r_i) - \bar{p}_i(r_i) = v_i^*(r_i)$

Rewrite $Rev^M = \sum_{i \in W} v_i^*(r_i) + \sum_{i \in N} \bar{p}_i(r_i)$

Given an allocation, critical value is determined.

Maximize revenue $Rev^M \Rightarrow$ maximize $\bar{p}_i(r_i)$.

$$\max \bar{p}_i(r_i)$$

$$s.t. \tilde{p}_i(r_i) = \bar{p}_i(r_i) + v_i^*(r_i)$$

$$\forall r'_i \subseteq r_i, \tilde{p}_i(r_i) \leq \tilde{p}_i(r'_i)$$

$$\forall r'_i \subseteq r_i, \bar{p}_i(r_i) \leq \bar{p}_i(r'_i)$$

$$v_i^*(\emptyset) \geq v_i^*(r'_i) \geq \dots \geq v_i^*(r_i) \text{ (IP-MON)}$$

$$\bar{p}_i(\emptyset) \leq 0$$

Solution:

$$\tilde{p}_i(r_i) = v_i^*(r_i)$$

$$\bar{p}_i(r_i) = 0$$