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▶ Informed bidders submit bids and compete for the items.
▶ The auctioneer determines who get the items (allocation), and
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Auction with two bidders.
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▶ Each bidder has two-dimensional private information:
valuation and invitation set.

▶ Individual Rationality: no deficit for bidders under truthful
bidding.

▶ Strategyproofness: truthfully reporting valuation and
inviting all the neighbors is the dominate strategy.

▶ Efficiency: Allocation rules that maximize social welfare.
▶ Budget-balance: no deficit for the seller.
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▶ (,) Classic Sealed-Bid Auction
single-item −→ multi-unit with unit demand.
Vickrey Auction!

▶ (/) Auction in Social Networks
single-item ?−→ multi-unit with unit demand.
Non-trivial!

▶ Some early works fail strategyproofness in multi-unit network
auction with single-unit demand [ZLX+18, KBT+20].

Missing designing principles beyond single-item settings!
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▶ Solvable in polynomial time by binary search.
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Characterization is powerful!

ID/IP-MON allocations ⇒ strategyproof mechanisms.
▶ Revisit the DNA-MU mechanism [KBT+20] and fix the

non-strategyproofness issue.

▶ Refine VCG mechanism and prove the revenue upper bound for
efficient allocation.

▶ Mechanism design for network auction with single-minded
bidders.



Our Results

Characterization is powerful!
ID/IP-MON allocations ⇒ strategyproof mechanisms.

▶ Revisit the DNA-MU mechanism [KBT+20] and fix the
non-strategyproofness issue.

▶ Refine VCG mechanism and prove the revenue upper bound for
efficient allocation.

▶ Mechanism design for network auction with single-minded
bidders.



Our Results

Characterization is powerful!
ID/IP-MON allocations ⇒ strategyproof mechanisms.
▶ Revisit the DNA-MU mechanism [KBT+20] and fix the

non-strategyproofness issue.
▶ Refine VCG mechanism and prove the revenue upper bound for

efficient allocation.
▶ Mechanism design for network auction with single-minded

bidders.



Thank you for your attention! Q & A

Poster Area 2 - Line F 27-42. (16:30 - 18:00)



[BK94] Jeremy I Bulow and Paul D Klemperer. Auctions vs.
negotiations, 1994.

[KBT+20] Takehiro Kawasaki, Nathanaël Barrot, Seiji Takanashi,
Taiki Todo, and Makoto Yokoo. Strategy-proof and
non-wasteful multi-unit auction via social network. In
Proceedings of the aaai conference on artificial intelligence,
volume 34, pages 2062–2069, 2020.

[LHZ20] Bin Li, Dong Hao, and Dengji Zhao.
Incentive-compatible diffusion auctions. arXiv preprint
arXiv:2001.06975, 2020.

[LHZZ17] Bin Li, Dong Hao, Dengji Zhao, and Tao Zhou.
Mechanism design in social networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[Mye81] Roger B Myerson. Optimal auction design. Mathematics
of operations research, 6(1):58–73, 1981.

[ZLX+18] Dengji Zhao, Bin Li, Junping Xu, Dong Hao, and
Nicholas R Jennings. Selling multiple items via social
networks. In Proceedings of the 17th International



Conference on Autonomous Agents and MultiAgent
Systems, pages 68–76, 2018.



Auction in Social Networks: Model [LHZZ17]

▶ A set of N agents.
▶ A set of K items.
▶ A market G = (N ∪ {s}, E) with seller s.
▶ Each agent i has private information ti = (vi, ri), where vi:

valuation; ri: neighbor set ri = {j | (i, j) ∈ E}.
▶ Mechanism M = (f, p) with allocation f and payment p.
▶ Quasi-linear utility function ui = fi · vi − pi.
▶ Social welfare: SWM(t) =

∑
i∈N fi · vi.

▶ Revenue: RevM(t) =
∑

i∈N pi.

1Generated by Gemini2.5 Flash.
1



Axioms for strategyproofness

Myerson’s Lemma [Mye81]
A mechanism M = (f, p) in a single-parameter domain is incentive
compatible if and only if the following conditions hold:
▶ Allocation f is value-monotonic.
▶ Every winning bidder pays the critical value:

v∗ = inf
vi:fi(vi,v−i)=1

vi



Axioms for strategyproofness

IC for Single-item Network Auction [LHZ20]
A mechanism M = (f, p) for single-item network auction is IC & IR
if and only if the following conditions hold:
▶ Allocation f is value-monotonic.
▶ Decomposing payment as pi = fip̃i + (1− fi)p̄i. winning

payment p̃i and losing payment p̄i are bid-independent.
▶ Under truthful referral ri, difference between p̃i and p̄i is the

critical value.
p̃(ri)− p̄(ri) = v∗(ri)

▶ Payment is referral-monotonic: ∀ r1i , r2i ⊆ ri, r1i ⊆ r2i ,

p̃i(r1i ) ≥ p̃i(r2i ).



Invitation-Depressed (ID) Monotonicity

Definition (Invitation-Depressed (ID) Partial Ordering ⪰D)
Given bidder i’s two types: t1i = (v1i , r

1
i ) and t2i = (v2i , r

2
i ), define

t1i ⪰D t2i if v
1
i ≥ v2i and r1i ⊆ r2i .

Definition (Invitation-Depressed (ID) Monotonicity)
Given allocation f, if fi(ti, t′−i) = 1 implies ∀ t′i ⪰D ti, fi(t′i, t′−i) = 1,
then f is ID-MON.

Hint: Higher bid & fewer invitation ⇒ better allocation.



Invitation-Depressed (ID) Monotonicity

Definition (Invitation-Depressed (ID) Partial Ordering ⪰D)
Given bidder i’s two types: t1i = (v1i , r

1
i ) and t2i = (v2i , r

2
i ), define

t1i ⪰D t2i if v
1
i ≥ v2i and r1i ⊆ r2i .

Definition (Invitation-Depressed (ID) Monotonicity)
Given allocation f, if fi(ti, t′−i) = 1 implies ∀ t′i ⪰D ti, fi(t′i, t′−i) = 1,
then f is ID-MON.

Hint: Higher bid & fewer invitation ⇒ better allocation.



Invitation-Depressed (ID) Monotonicity

Theorem 1
Given any ID-MON allocation f, the payment rule

p∗ = {p∗i = v∗i (∅)− (1− fi)v∗i (ri)}i∈N

maximizes the revenue and mechanismM = (f, p∗) is
strategyproof.
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Invitation-Promoted (IP) Monotonicity

Theorem 2
Given one IP monotone allocation f, the payment rule

p∗ = {p∗i = fiv∗i (ri)}i∈N

maximizes the revenue and mechanismM = (f, p∗) is
strategyproof.



Proof Sketch of Theorem 1
Revenue: RevM =

∑
i:fi=1 p̃i(ri) +

∑
i:fi=0 p̄i(ri)

IC condition for critical value: p̃i(ri)− p̄i(ri) = v∗i (ri)
Rewrite RevM =

∑
i∈W v∗i (ri) +

∑
i∈N p̄i(ri)

Given an allocation, critical value is determined.
Optimize revenue⇒ optimize p̄i(ri).

max p̄i(ri)
s.t. p̃i(ri) = p̄i(ri) + v∗i (ri)

∀r′i ⊆ ri, p̃i(ri) ≤ p̃i(r′i)

∀r′i ⊆ ri, p̄i(ri) ≤ p̄i(r′i)

v∗i (ri) ≥ v∗i (r
′
i) ≥ · · · ≥ v∗i (∅) (ID-MON)

p̄i(∅) ≤ 0

Solution:

p̃i(ri) = v∗i (∅)
p̄i(ri) = v∗i (∅)− v∗i (ri)
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∑
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∑
i:fi=0 p̄i(ri)

IC condition for critical value: p̃i(ri)− p̄i(ri) = v∗i (ri)
Rewrite RevM =

∑
i∈W v∗i (ri) +

∑
i∈N p̄i(ri)

Given an allocation, critical value is determined.
Maximize revenue RevM ⇒ maximize p̄i(ri).

max p̄i(ri)
s.t. p̃i(ri) = p̄i(ri) + v∗i (ri)

∀r′i ⊆ ri, p̃i(ri) ≤ p̃i(r′i)
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Solution:
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p̄i(ri) = 0
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