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Classic Sealed-Bid Auction

» The auctioneer announces the sale information.
» Informed bidders submit bids and compete for the items.

» The auctioneer determines who get the items (allocation), and
how much for charge (payment).
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Auction in Social Networks: Motivation

“An auction with N + 1 bidders has better revenue in
expectation than any negotiation with N bidders.” [BK94]

A competitive market is more desirable!

Incentivize bidders inviting new potential bidders via social
interactions!
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» Each bidder has two-dimensional private information:
valuation and invitation set.

» Individual Rationality: no deficit for bidders under truthful
bidding.

> Strategyproofness: truthfully reporting valuation and
inviting all the neighbors is the dominate strategy.

> Efficiency: Allocation rules that maximize social welfare.

> Budget-balance: no deficit for the seller.
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Challenges

» (©) Classic Sealed-Bid Auction
single-item — multi-unit with unit demand.
Vickrey Auction!

> (®) Auction in Social Networks

o
single-item — multi-unit with unit demand.
Non-trivial!

> Some early works fail strategyproofness in multi-unit network
auction with single-unit demand [ZLX" 18, KBT"20].

Missing designing principles beyond single-item settings!
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Strategyproof mechanisms

Value-MON

Degenerated
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Our Results

We consider 0-1 deterministic mechanisms with single-parameterized
valuation bidders.
(E.g., single-item, multi-unit with unit demand, single-minded, ...)
A characterization of strategyproof mechanisms with monotone
allocations.
» Two typical types of monotone allocation rules.
> Invitation-Depressed Monotonicity (ID-MON).
> Invitation-Promoted Monotonicity (IP-MON).
» Payment rules.

P> Revenue-maximization payment rules.
» Solvable in polynomial time by binary search.
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Our Results

Characterization is powerful!
ID/IP-MON allocations = strategyproof mechanisms.

» Revisit the DNA-MU mechanism [KBT"20] and fix the
non-strategyproofness issue.

» Refine VCG mechanism and prove the revenue upper bound for
efficient allocation.

> Mechanism design for network auction with single-minded

bidders.



Thank you for your attention! Q & A

Poster Area 2 - Line F 27-42. (16:30 - 18:00)
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Auction in Social Networks: Model [LHZZ17]

A set of N agents.
A set of K items.
A market G = (NU {s}, E) with seller s.

Each agent i has private information t; = (v;, r;), where v;:
valuation; r;: neighbor set r; = {j | (i,j) € E}.

vvyyy

Mechanism M = (f, p) with allocation fand payment p.
Quasi-linear utility function u; = f; - vi — p;.
Social welfare: SWM(t) = YienSitvie
Revenue: Rev'(t) = 3,y pi-

vvyyypy

'Generated by Gemini2.5 Flash.



Axioms for strategyproofness

Myerson’s Lemma [Mye81]

A mechanism M = (f, p) in a single-parameter domain is incentive
compatible if and only if the following conditions hold:

» Allocation fis value-monotonic.

» Every winning bidder pays the critical value:

Vi = inf Vi

vitfi(vi,v—i)=1



Axioms for strategyproofness

IC for Single-item Network Auction [LHZ20]

A mechanism M = (f, p) for single-item network auction is IC & IR
if and only if the following conditions hold:

>
| 4

>

Allocation fis value-monotonic.
Decomposing payment as p; = f;p; + (1 — f;)pi. winning
payment p; and losing payment p; are bid-independent.

Under truthful referral r;, difference between p; and p; is the
critical value.

p(ri) — p(ri) = v'(r))

Payment is referral-monotonic: Vrt, 2 C r;, rt C 12,

pi(ri) > pi(r?).
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Definition (Invitation-Depressed (ID) Partial Ordering >p)
Given bidder i’s two types: t = (v}, r}) and £ = (2, 1?), define
tt=p £ifvi >V andrl C .

Definition (Invitation-Depressed (ID) Monotonicity)

Given allocation f if fi(t;,t"_;) = 1 implies V &, =p &, fi(£;,t",) = 1,
then fis ID-MON.

Hint: Higher bid & fewer invitation = better allocation.



Invitation-Depressed (ID) Monotonicity

Theorem 1
Given any ID-MON allocation f, the payment rule

P = {5 = vi(0) — (1L - AV () }iew

maximizes the revenue and mechanism M = (f, p*) is
strategyproof.
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Definition (Invitation-Promoted (IP) Partial Ordering >p)
Given bidder i’s two types: t = (v}, r}) and £ = (2, 1?), define

tj =p £ ifv; > viand i} C 1.

Definition (Invitation-Promoted (IP) Monotonicity)

Given allocation f if fi(t;,t"_;) = 1 implies V&, =p t;, fi(t,t" ;) = 1,

then fis invitation-depressed monotone.

Hint: Higher bid & more invitation = better allocation.



Invitation-Promoted (IP) Monotonicity

Definition (Invitation-Promoted (IP) Partial Ordering >p)
Given bidder i’s two types: t = (v}, r}) and £ = (2, r?), define
t}tpt?ifv}Zv?andr%gr}.

Definition (Invitation-Promoted (IP) Monotonicity)

Given allocation f, if fi(t;,t"_;)) = 1 implies V¢, =p t;, fi(£,,t";) = 1,
then fis IP-MON.



Invitation-Promoted (IP) Monotonicity

Theorem 2
Given one IP monotone allocation f, the payment rule

p" = {pi = fivi (ri)}ien

maximizes the revenue and mechanism M = (f, p*) is
strategyproof.



Proof Sketch of Theorem 1
Revenue: Rev™ = X, pi(r) + X Pi(r)
IC condition for critical value: p;(r;) — pi(ri) = vi(r;)

Rewrite Rev" = 3"\ vi(ri) + 3 ey Bilri)
Given an allocation, critical value is determined.
Optimize revenue = optimize p;(r;).

max p;(ry)
s.t. pi(ri) = pi(ri) + vi (r7)
Vi C i, pi(ri) < pilr})
Vi C i, pi(ri) < pilr})
vi(r) > vi(F) > - > vi(D) (ID-MON)

Solution:



Proof Sketch of Theorem 2
Revenue: Rev'' =37, ) pi(ri) + Yo Pilri)
IC condition for critical value: p;(r;) — pi(r;) = vi(r;)
Rewrite RevM = 3", vi(r) + Y ien Pil1)
Given an allocation, critical value is determined.
Maximize revenue Rev™ = maximize p;(r;).

rnaxf)i(r,-)

s.t. [3,'([‘,') = [_)i(rl) + V;F(l‘,')
v, C i, pi(ri) < pi(r)
v, C r, pi(ri) < pi(r})
Vi (0) > vi(r) > --- > vi(r;) (IP-MON)
pi(0) <0

Solution:
ijl(ri) =V (rl)



	References
	Appendix
	Omitted details


