



# Strategyproofness and Monotone Allocation of Auction in Social Networks

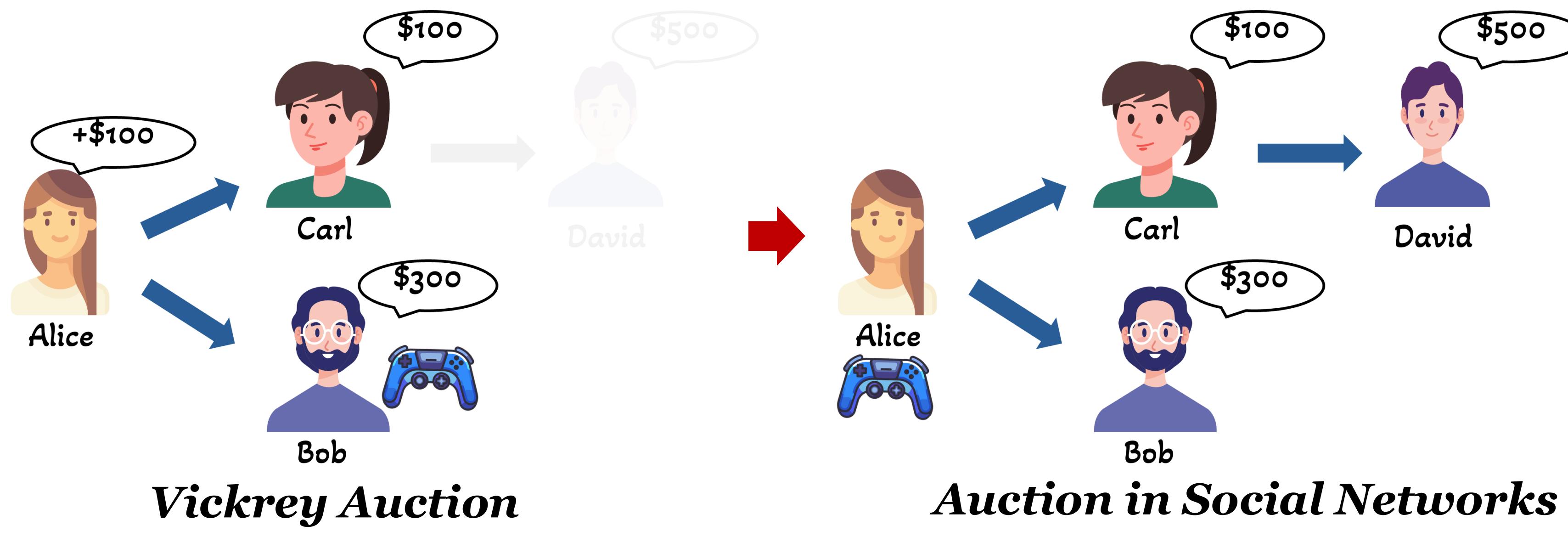
Yuhang Guo<sup>1,2</sup>, Dong Hao<sup>1</sup>, Bin Li<sup>3</sup>, Mingyu Xiao<sup>1</sup>, Bakh, Khoussainov<sup>1</sup>  
<sup>1</sup> University of Electronic Science and Technology of China, <sup>2</sup> University of New South Wales, <sup>3</sup> Nanjing University of Science and Technology



## Background

**"An auction with  $N+1$  bidders is better in expected revenue than any negotiation with  $N$  bidders."** [BK94]

**A competitive market is more desirable!**



Vickrey Auction

Auction in Social Networks

## Axioms for Network Auction

- Individual Rationality (IR):** No deficit for bidders under **truthful** bidding.
- Strategyproofness (SP):** Truthfully reporting **valuation** and **inviting all the neighbors** is the dominate strategy.
- Efficient (EF):** **Maximizing** social welfare.
- (Weakly) Budget-balanced (WBB):** No deficit for the seller.

## Our Results

**Setting:** 0-1 deterministic mechanisms with **single-parameterized valuation** bidders.  
 (e.g., Single-item, multi-unit with unit-demand, single-minded, ... )

### Invitational-Depressed Monotonicity (ID-MON)

Let  $t_i^1 = (v_i^1, r_i^1)$ ,  $t_i^2 = (v_i^2, r_i^2)$ ,  $t_i^1 \succcurlyeq_D t_i^2$  if  $v_i^1 \geq v_i^2$  and  $r_i^1 \subseteq r_i^2$ .

$f$  is ID-MON if  $\forall i \in N, f_i(t_i, t'_{-i}) \geq f_i(t'_i, t'_{-i}), \forall t_i \succcurlyeq_D t'_i$ .

Given ID-MON allocation  $f$ , let  $\mathbf{p}^* = \{p_i = v_i^*(\emptyset) - (1 - f_i)v_i^*(r_i)\}$ .

$\mathcal{M} = (f, p^*)$  is IR and SP and for any IR and SP  $\mathcal{M}' = (f, p')$ ,

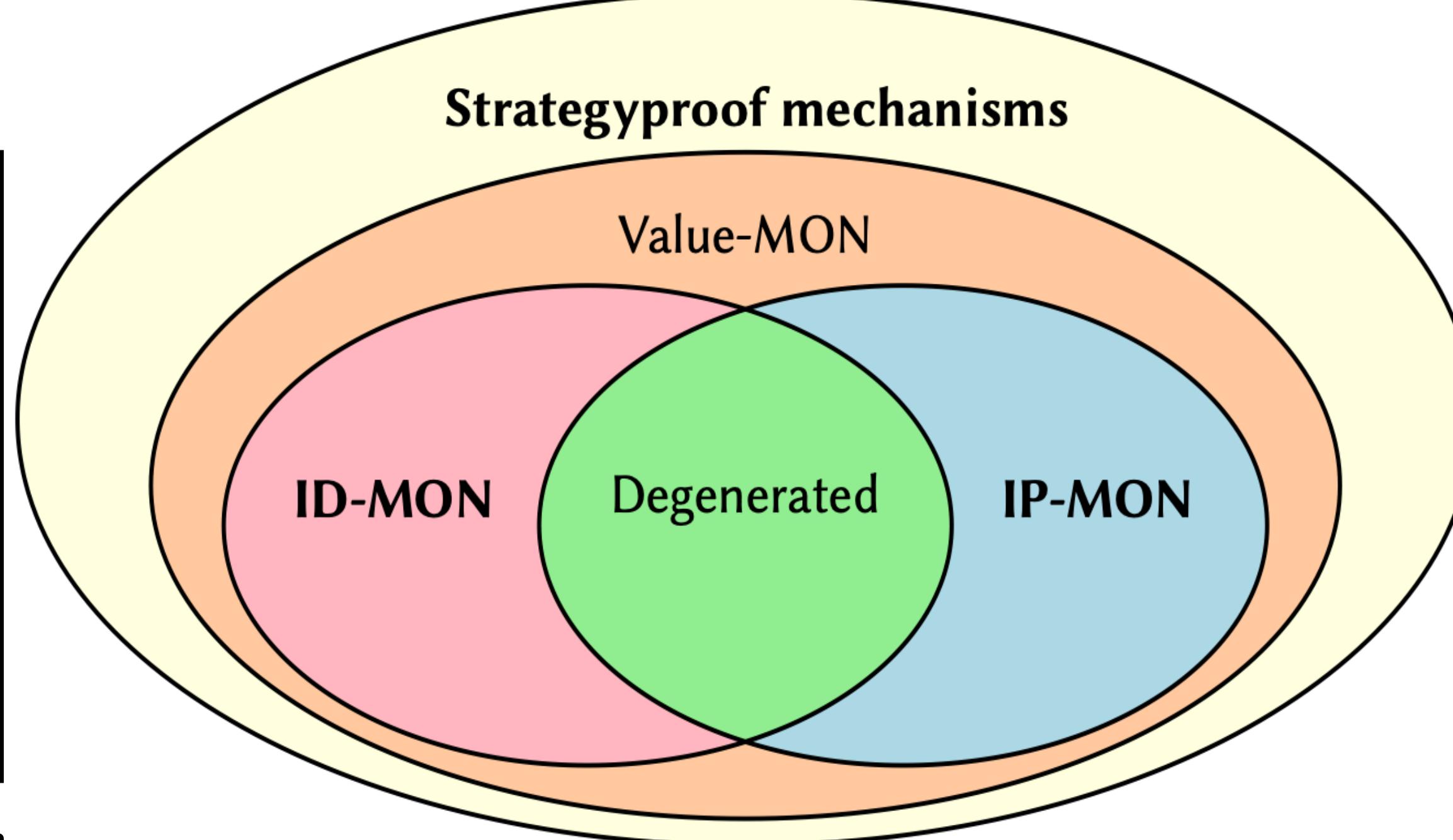
$$\text{Rev}^{\mathcal{M}}(t) \geq \text{Rev}^{\mathcal{M}'}(t).$$

## Model

- A set of  $N$  agents;
- A set of  $K$  items;
- A market  $G = (N \cup \{s\}, E)$  with seller  $s$ ;
- Agent  $i$ 's type:  $t_i = (v_i, r_i)$ ,  $v_i$ : valuation,  $r_i$ : neighbor set;
- Mechanism  $\mathcal{M} = (f, p)$
- Utility function  $u_i = f_i \cdot v_i - p_i$ ;
- **Social Welfare:**  $\text{SW}^{\mathcal{M}}(t) = \sum_{i \in N} f_i \cdot v_i$ ;
- **Revenue:**  $\text{Rev}^{\mathcal{M}}(t) = \sum_{i \in N} p_i$ .

## IR & SP Network Auction [LHZ20]

- Allocation  $f$  is **value-monotone**.
- Let  $p_i = f_i \cdot \hat{p}_i + (1 - f_i) \cdot \bar{p}_i$ .  $\hat{p}_i$  and  $\bar{p}_i$  are **bid-independent**.
- For agent  $i$  with  $r_i$ , difference between  $\hat{p}_i$  and  $\bar{p}_i$  is **the critical value**, i.e.,  $\hat{p}_i - \bar{p}_i = v_i^*(r_i)$ .
- $\hat{p}_i$  and  $\bar{p}_i$  are **invitational-monotonic**, i.e.,  $\forall r_i^1, r_i^2 \subseteq r_i, r_i^1 \subseteq r_i^2, \hat{p}_i(r_i^1) \geq \hat{p}_i(r_i^2), \bar{p}_i(r_i^1) \geq \bar{p}_i(r_i^2)$ .



### Invitational-Promoted Monotonicity (IP-MON)

Let  $t_i^1 = (v_i^1, r_i^1)$ ,  $t_i^2 = (v_i^2, r_i^2)$ ,  $t_i^1 \succcurlyeq_P t_i^2$  if  $v_i^1 \geq v_i^2$  and  $r_i^2 \subseteq r_i^1$ .

$f$  is IP-MON if  $\forall i \in N, f_i(t_i, t'_{-i}) \geq f_i(t'_i, t'_{-i}), \forall t_i \succcurlyeq_P t'_i$ .

Given IP-MON allocation  $f$ , let  $\mathbf{p}^* = \{p_i = f_i \cdot v_i^*(r_i)\}$ .

$\mathcal{M} = (f, p^*)$  is IR and SP and for any IR and SP  $\mathcal{M}' = (f, p')$ ,

$$\text{Rev}^{\mathcal{M}}(t) \geq \text{Rev}^{\mathcal{M}'}(t).$$

### Algorithm 1 DNA-MU Mechanism [Kawasaki et al., 2020]

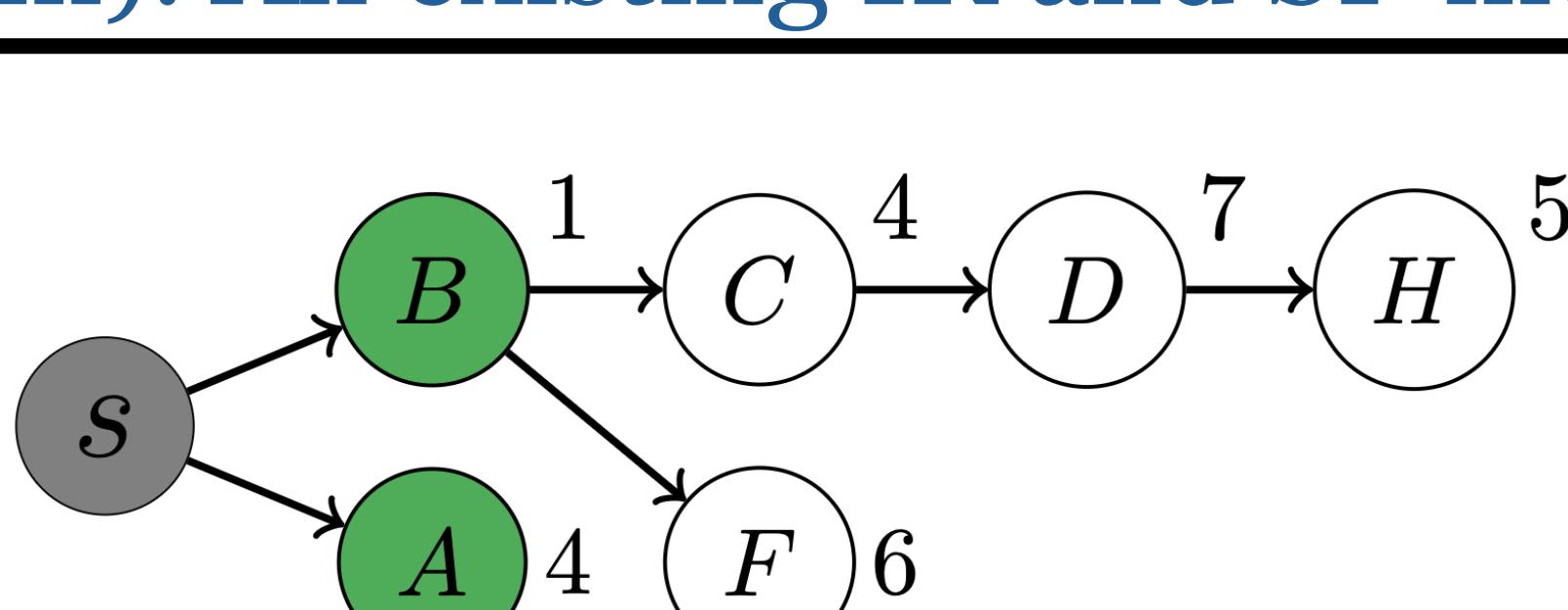
```

Input:  $G = (N \cup \{s\}, E), \theta, \mathcal{K}$ ;
Output: Allocation  $f$ , payment  $p$ ;
1: Initialize ordering  $\mathcal{O} \leftarrow \text{BFS}(G, s)$ ;
2: Create Invitational-Domination Tree (IDT)  $T$ ;
3: Initialize  $k \leftarrow |\mathcal{K}|, W \leftarrow \emptyset$ ;
4: for  $i$  in  $\mathcal{O}$  do
5:    $T_i \leftarrow$  Sub-Tree rooted by  $i$  in  $T$ ;
6:   if  $v_i \geq v^k(N \setminus (T_i \cup W))$  then
7:      $f_i \leftarrow 1, p_i \leftarrow v^k(N \setminus (T_i \cup W))$ ;
8:     Update  $k \leftarrow k - 1, W \leftarrow W \cup \{i\}$ ;
9:   end if
10: end for
11: Return  $f, p$ .
```

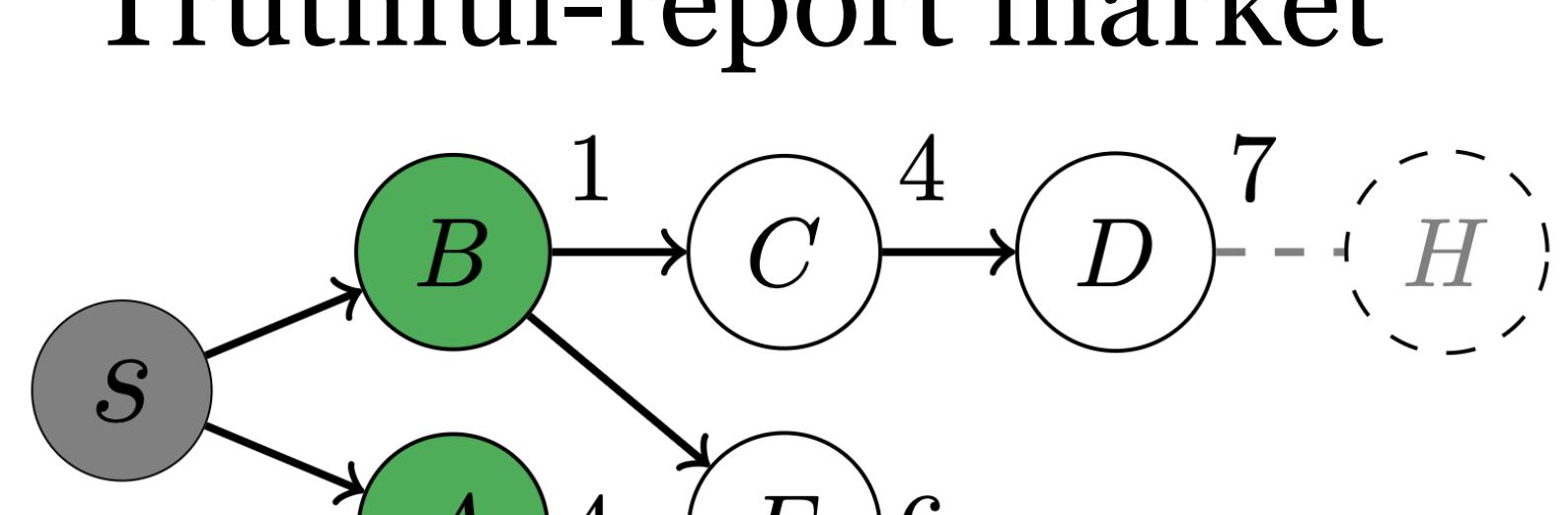
### Algorithm 4 DNA-MU-Refined (DNA-MU-R) Mechanism

```

Input:  $G = (N \cup \{s\}, E), \theta, \mathcal{K}$ ;
Output: Allocation  $f$ , payment  $p$ ;
1: Initialize order  $\mathcal{O} \leftarrow \text{BFS}(G, s)$ ;
2: Create Invitational-Domination Tree (IDT)  $T$ ;
3: Initialize  $k \leftarrow |\mathcal{K}|, W \leftarrow \emptyset$ ;
4: for  $i$  in  $\mathcal{O}$  do
5:    $T_i \leftarrow$  Sub-Tree rooted by  $i$  in  $T$ ;
6:   if  $v_i \geq v^k(N \setminus T_i)$  then
7:      $f_i \leftarrow 1, p_i \leftarrow v_i^*(r_i)$ ;
8:     Update  $W \leftarrow W \cup \{i\}$ ;
9:   end if
10: end for
11: Return  $f, p$ .
```



Truthful-report market



$D$  misreports  $\emptyset$

| $\mathcal{M}$ | Market    | Winner    | Payment                     |
|---------------|-----------|-----------|-----------------------------|
| DNA-MU        | truthful  | $B, F, C$ | $p_B = 0, p_F = 5, p_C = 4$ |
|               | misreport | $A, B, D$ | $p_A = 4, p_B = 0, p_D = 6$ |
| DNA-MU-R      | truthful  | $B, F, C$ | $p_B = 0, p_F = 4, p_C = 1$ |
|               | misreport | $A, B, F$ | $p_A = 4, p_B = 0, p_F = 4$ |

## Reference

[BK94] Jeremy I Bulow and Paul D Klemperer. *Auctions vs. negotiations*, 1994.  
 [LHZ20] Bin Li, Dong Hao, and Dengji Zhao. *Incentive-compatible diffusion auctions*. IJCAI 2020.  
 [Kawasaki et al. 2020] Takehiro Kawasaki, Nathanaël Barrot, Seiji Takanashi, Taiki Todo, and Makoto Yokoo. *Strategy-proof and non-wasteful multi-unit auction via social network*. AAAI 2020.