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Facility Location Problem




Facility Location Problem

Determining the optimal locations for facilities to minimize travel
costs when serving agents.
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Design mechanisms to incentivize agents truthfully reporting the
location.
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“Maximum Group Effect is the earliest and most frequently
used measure that has an equity component.”
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Model

v

Aset N:={1,2,..., n} of nagents.
Aset G :={Gy, Gy, ..., Gy} of mgroups.
Each agent i € N has a type 6; = (x;, gi) where x; € R is the

private location in the real line space, and g; C G their public
group membership.

Type profile of all the agents @ = (61,0,,...,0,).

Each group G; € G has a weight w;. Denote Wimin = Minjc[p] W;
and Wmax = MaX;e[m] Wj-

Given location subset Y, the cost incurred by agent i is defined
as (Y, x;) = minyey |y — xil.
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Maximum Group Effect: mge(8, f(6)) = maxe[n w; - Ej, where

£ Ziecj c(f(0),x;)  weighted Total Group Cost
’ max;eg; ¢(f(0),x;) weighted Maximum Group Cost



Our Results

Capturing Fairness Through Generalized Metrics.
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Model

> A deterministic mechanism f : @ — R* maps profile 6 to k
facility location.

P Strategyproofness: A mechanism f is strategyproof if, for any
agent i with 6;, consider any misreported location x! € R and
fixing 6”_;. We have:

c(f((xi, 8),0), xi) < c(f((xi, &), 0-,), xi)-

» Approximation Ratio: For any mechanism f, the approximation
ratio is:

_ mge(6, £(0))
P~ peer mge(6,OPT(0))’

where OPT(80) is the optimal placement that minimizes mge.



Our Results

Unified Mechanisms with Tight Approximation Guarantee.

Setting Objectives  Mechanisms Bounds

k=1 wTGC BALANCED 2

wMGC Major-Phantom 2
EndPoints 1+ (n — 2)%mx

k=2 wTGC
wMGC EndPoints 1+ %
k>3 General / 50

(All listed bounds are tight. Gray shading denotes the contributions

of this work.)
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Single-Facility: weighted Total Group Cost

Interpretation of Maximum Group Effect

jelm] Jjelm]

mge (0, f(0)) = maxw; - E; = max w; - Z c(f(0), xi)-

BALANCED Mechanism

Input: Agent profile 6, group weights {w;}jc(m-
1. Lj(y) = # of agents in group j whose location is on the
left of (or at) location y. (non-decreasing)

2. Ri(y) = # of agents in group j whose location is on the
right of location y. (non-increasing)

3. Place the facility at the leftmost location y such that
maxje[m] Wij(y) > maxj/e[m] Wj/Rj/(y).
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Balanced Mechanism: Example

Consider an instance with 9 agents and 2 groups with weights
wp=w, = 1.
» Group G; (O): 3 agents at 0, one agent at 1/2, one agent at 1.
» Group G, (L)): 4 agents at 1.

7,
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‘ Majority Group Median Mechanism [ZLC22] ‘
’ Median of Group Median Mechanism [ZLC22] ‘

The facility is placed at the 0, mge(0, f(0)) = 4.



Balanced Mechanism: Example

2 .

0 0.5 1
M-G-M  Balanced Median

> Median: facility at 1, mge(0,f(0)) = 7/2.

> Majority Group Median/Median of Group Median: facility at 0,
mge(6,f(0)) = 4.

» Balanced: facility at 1/2, mge(0, f(0)) = 2 (Optimal).



Single-Facility: weighted Maximum Group Cost

MAJOR-PHANTOM Mechanisms?

“Phantom mechansim [Mou80]

Input: Agent profile 6, group weights {w;}cm-
1. Gmax: the largest weight group.
2. x%max: the location profile of agents in Gax.
3. Consider |Gmax| — 1 constant values: vy, ..., V| G| —1¢
4

. Place the facility at median(x, vi, ..., vig,..|-1)-




Result Overview

Setting Objectives  Mechanisms Bounds

k=1 wTGC BALANCED 2
wMGC Major-Phantom 2

EndPoints 1+ (n— 2)Yma

k=2 wTGC
wMGC EndPoints 1+ Ymax
k>3 General / 0




Takeaways

> We study a general fairness objective, Maximum Group Effect
(mge).

> We explore strategyproof deterministic mechanisms for
minimizing mge and establish tight approximation bounds.

» Future directions include randomized mechanisms for mge and
mechanism design in high dimensional settings.



Thank you for your attention!

Poster session: Jan 24 (Hall 4 1046)
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