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Facility Location Problem
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▶ “Approximate Mechanism Design without Money”: Social
Cost and Max Cost [PT09].

▶ “Strategyproof Mechanisms for Group-Fair Facility
Location Problems”: Maximum Total Group Cost (mtgc) and
Maximum Average Group Cost (magc) [ZLC22].
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“Maximum Group Effect is the earliest and most frequently
used measure that has an equity component.”



Model

▶ A set N := {1, 2, . . . , n} of n agents.

▶ A set G := {G1,G2, . . . ,Gm} of m groups.
▶ Each agent i ∈ N has a type θi = (xi, gi) where xi ∈ R is the

private location in the real line space, and gi ⊆ G their public
group membership.

▶ Type profile of all the agents θ = (θ1, θ2, . . . , θn).
▶ Each group Gj ∈ G has a weight wj . Denote wmin = minj∈[m] wj

and wmax = maxj∈[m] wj .
▶ Given location subset Y , the cost incurred by agent i is defined

as ci(Y , xi) = miny∈Y |y − xi|.
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Model

Maximum Group Effect: mge(θ, f (θ)) = maxj∈[m] wj · Ej ,

where

Ej =

{∑
i∈Gj

c(f (θ), xi) weighted Total Group Cost

maxi∈Gj c(f (θ), xi) weighted Maximum Group Cost
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Our Results

Capturing Fairness Through Generalized Metrics.

mge

weighted Total Group Cost (wTGC) weighted Max Group Cost (wMGC)

mtgc magc Social Cost Max Cost

wj = 1 wj =
1

|Gj | m = 1

gi = {i} m = 1



Model

▶ A deterministic mechanism f : θ → Rk maps profile θ to k
facility location.

▶ Strategyproofness: A mechanism f is strategyproof if, for any
agent i with θi , consider any misreported location x ′i ∈ R and
fixing θ′

−i . We have:

c(f ((xi, gi),θ′
−i), xi) ≤ c(f ((x ′i , gi),θ

′
−i), xi).

▶ Approximation Ratio: For any mechanism f , the approximation
ratio is:

ρ = sup
θ∈Θn

mge(θ, f (θ))
mge(θ,OPT(θ))

,

where OPT(θ) is the optimal placement that minimizes mge.
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Our Results

Unified Mechanisms with Tight Approximation Guarantee.

Setting Objectives Mechanisms Bounds

k = 1 wTGC BALANCED 2
wMGC Major-Phantom 2

k = 2 wTGC EndPoints 1 + (n− 2)wmax
wmin

wMGC EndPoints 1 + wmax
wmin

k ≥ 3 General / ∞

(All listed bounds are tight. Gray shading denotes the contributions
of this work.)



Single-Facility: weighted Total Group Cost

Interpretation of Maximum Group Effect

mge(θ, f (θ)) = max
j∈[m]

wj · Ej = max
j∈[m]

wj ·
∑
i∈Gj

c(f (θ), xi).

BALANCED Mechanism

Input: Agent profile θ, group weights {wj}j∈[m].

1. Lj(y) = # of agents in group j whose location is on the
left of (or at) location y . (non-decreasing)

2. Rj(y) = # of agents in group j whose location is on the
right of location y . (non-increasing)

3. Place the facility at the leftmost location y such that
maxj∈[m] wjLj(y) ≥ maxj′∈[m] wj′Rj′(y).
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Balanced Mechanism: Example

Consider an instance with 9 agents and 2 groups with weights
w1 = w2 = 1.
▶ Group G1 (⃝): 3 agents at 0, one agent at 1/2, one agent at 1.
▶ Group G2 (□): 4 agents at 1.
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Balanced Mechanism: Example

0
M-G-M

0.5
Balanced

1
Median

▶ Median: facility at 1, mge(θ, f (θ)) = 7/2.
▶ Majority Group Median/Median of Group Median: facility at 0,

mge(θ, f (θ)) = 4.
▶ Balanced: facility at 1/2, mge(θ, f (θ)) = 2 (Optimal).



Single-Facility: weighted Maximum Group Cost

MAJOR-PHANTOMMechanismsa

aPhantom mechansim [Mou80]

Input: Agent profile θ, group weights {wj}j∈[m].

1. Gmax: the largest weight group.

2. xGmax : the location profile of agents in Gmax.

3. Consider |Gmax| − 1 constant values: v1, . . . , v|Gmax|−1.

4. Place the facility at median(xGmax , v1, . . . , v|Gmax|−1).



Result Overview

Setting Objectives Mechanisms Bounds

k = 1 wTGC BALANCED 2
wMGC Major-Phantom 2
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wmin
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Takeaways

▶ We study a general fairness objective, Maximum Group Effect
(mge).

▶ We explore strategyproof deterministic mechanisms for
minimizing mge and establish tight approximation bounds.

▶ Future directions include randomized mechanisms for mge and
mechanism design in high dimensional settings.



Thank you for your attention!

Poster session: Jan 24 (Hall 4 1046)
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