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Abstract

This paper studies the problem of minimizing group-level
inequity in facility location games on the real line, where
agents belong to different groups and may act strategically.
We explore a fairness-oriented objective that minimizes the
maximum group effect introduced by Marsh and Schilling
(1994). Each group’s effect is defined as its total or max-
imum distance to the nearest facility, weighted by group-
specific factors. We show that this formulation generalizes
several prominent optimization objectives, including the clas-
sical utilitarian (social cost) and egalitarian (maximum cost)
objectives, as well as two group-fair objectives, maximum to-
tal and average group cost. In order to minimize the maxi-
mum group effect, we first propose two novel mechanisms
for the single-facility case, the Balanced mechanism and
the Major-Phantom mechanism. Both are strategyproof and
achieve tight approximation guarantees under distinct formu-
lations of the maximum group effect objective. Our mech-
anisms not only close the existing gap in approximation
bounds for group-fairness objectives identified by Zhou, Li,
and Chan (2022), but also unify many classical truthful mech-
anisms within a broader fairness-aware framework. For the
two-facility case, we revisit and extend the classical endpoint
mechanism to our generalized setting and demonstrate that it
provides tight bounds for two distinct maximum group effect
objectives.

1 Introduction

Facility Location Games (FLGs), which study how to lo-
cate facilities based on agents’ preferences, have been ex-
tensively explored over the past two decades. Most prior
work in this area has prioritized efficiency, typically aim-
ing to minimize the total cost incurred by agents in access-
ing services. Such efficiency-driven approaches achieve op-
timal social welfare, however, at the expense of fairness
and equity. In particular, mechanisms designed purely for
efficiency tend to favor majority groups, leaving disadvan-
taged or minority populations marginalized. Recognizing
these limitations, recent research has increasingly focused
on incorporating fairness into facility location games. These
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efforts span a spectrum from individual fairness, which aims
to equalize costs across agents (Cai, Filos-Ratsikas, and
Tang 2016; Walsh 2025), to group fairness, which ensures
equitable treatment across predefined groups (Marsh and
Schilling 1994; Zhou, Li, and Chan 2022; Aziz et al. 2025).
A seminal contribution by Marsh and Schilling (1994) intro-
duced various equity metrics, including the “center” objec-
tive, which seeks to minimize the maximum group effect.
As they note,

“This is the earliest and most frequently used measure
that has an equity component.”

This underscores the significance of the center objective
in equity-aware location analysis. However, many subse-
quent studies have adopted a narrow interpretation of this
objective, often modeling it as the maximum individual dis-
tance across all agents, thereby overlooking group structures
and alternative definitions of group-level costs. In contrast,
Marsh and Schilling (1994) proposed a broader formulation,
in which the effect of a group, E;, could be defined in terms
such as the fotal distance incurred by all agents in group
1. This generalization more accurately reflects the collective
burden borne by each group, offering a richer fairness per-
spective. Motivated by this observation, we revisit the gen-
eral objective of minimizing max; F; and study its implica-
tions within the framework of facility location games.

In this paper, we focus on the objective of minimizing
the maximum group effect, where the effect E; of a group ¢
is defined as either the total or maximum distance from its
agents to their nearest facility, multiplied by a weight w;,
capturing group-specific priorities, such as socioeconomic
status or policy-driven importance (see Section 2 for formal
definitions). Our objective of minimizing max; E; empha-
sizes group-level fairness by bounding the worst-case bur-
den among all groups. Unlike traditional formulations that
protect only the most distant individual, our model accounts
for the collective experience of each group. This perspective
aligns with Rawlsian principles (Rawls 1958), which advo-
cate prioritizing the welfare of the most disadvantaged. We
aim to design new strategyproof mechanisms to this group-
centric fairness objective.

Related Work

FLGs have received significant attention in the literature
over the past decades, particularly following the influential



work of Procaccia and Tennenholtz (2009). For an overview
of the diverse models, we refer readers to the comprehensive
survey by Chan et al. (2021). In the remainder of this section,
we focus specifically on research that investigates fairness
notions within the context of facility location games.

There is a rich body of work studying fairness consid-
erations in facility location problems from the optimization
perspective. Early studies in the operations research com-
munity explored various equity-based fairness measures,
including the standard deviation of distances (McAllister
1976) and the Gini coefficient (Marsh and Schilling 1994).
In the context of algorithmic mechanism design, the pio-
neering work of Procaccia and Tennenholtz (2009) intro-
duced the notion of individual fairness through the maxi-
mum cost objective, i.e., minimizing the maximum individ-
ual distance from any agent to the facility, and proposed
strategyproof mechanisms that approximately optimize this
objective. Building on this foundation, later research pro-
posed alternative formulations of individual fairness. Cai,
Filos-Ratsikas, and Tang (2016) studied the minimax envy
objective, which captures fairness via the maximum differ-
ence in distances between any pair of agents; this frame-
work was subsequently extended to the two-facility setting
by Chen et al. (2022). Ding et al. (2020) introduced the
envy ratio objective, adapted from the fair division problem,
which measures the ratio of the best-off agent’s utility to that
of the worst-off agent. This concept was further extended to
the multi-facility case by Liu et al. (2020). Walsh (2025)
studied the Gini index objective and proposed strategyproof
mechanisms.

Fairness notions have also been extended from individuals
to groups of agents. Zhou, Li, and Chan (2022); Li, Li, and
Chan (2024) investigated two group-based fairness objec-
tives: the maximum total cost (mtgc) and maximum average
cost (magc), each capturing the worst-case burden across
predefined groups of agents. Aziz et al. (2025) introduced
a model of proportional fairness, in which fairness guaran-
tees are provided to endogenously defined groups of agents,
and the strength of the guarantee scales proportionally with
group size. This concept was further extended by Lam et al.
(2024) to the setting of obnoxious facility location, where
the facility imposes disutility rather than providing benefit.

Roadmap Section 2 introduces the group-based facility
location game model, formally defines our key objective,
maximum group effect, and provides an overview of our
main contributions. Section 3 focuses on the single-facility
setting, where we propose two novel mechanisms tailored
to distinct formulations of the maximum group effect ob-
jective. In Section 4, we extend our analysis to the multi-
facility setting and revisit the classical ENDPOINT mecha-
nism within the framework. Due to space constraints, some
proofs are omitted.

2 Model and Contributions
Facility Location Games

Forany ¢t € N, let [t] := {1,2,...,t}. A facility location
game consists of a set N = [n] of n agents, belonging to
m groups. For each agent ¢ € NN, her type is denoted as

0; = (zi,9;) where z; € R is the agent’s private loca-
tion on a line, and g; C [m] denotes the set of their public
group memberships. The type profile of all agents is denoted
by 6 = (01,0, ...,6,). Without loss of generality, we as-
sume that agents are indexed by z1 < 2 < - < 2y,
Let G be the set of groups, G = {G1,Ga,...,G,,} where
G; = {i € N : j € g;} represents the set of agents
belonging to group j. Denote by |G;| the cardinality of
G;. For each group j € [m], j is assigned with a weight
w; > 0, reflecting their priority, such as socioeconomic fac-
tors or policy-driven importance. To simplify notation, let
Wiax = MaXj¢[m] W) and wyin = minje[m} w; denote
the maximum and minimum group weights, respectively,
and let w,, = max,eq, {w,} denote the maximum weight
among all the groups to which agent ¢ belongs. A determin-
istic mechanisms f : ©® — R¥ maps the type profile 6
to locations of k facilities on a real line. Given any mecha-
nism f, for each agent 4, the cost incurred by 1 is defined as
c(f(8), ;) = minye (g [y — 4/, i.e., the distance from z;
to the nearest facility.

In this paper, we primarily focus on designing strate-
gyproof mechanisms. A mechanism f is said to satisfy
strategyproofness (SP) if it is in the best interests of ev-
ery agent ¢ to report their truthful location x;, irrespectively
of the reports of the other agents.

Definition 2.1 (Strategyproofness (SP)). A mechanism f is
strategyproof if, for any agent i with true location x; and
group g;, any misreported location x); € R, and any profile
0'_, of other agents’ reports, we have:

c(f((xi9:),0",) xi) < e(f (27, 9:),074), 0).-

Maximum Group Effect

Given the requirement of strategyproofness, our goal is to
design mechanisms that minimize inequity, as captured by
the maximum group effect objective, aligning with the cen-
tral notion proposed by Marsh and Schilling (1994). For-
mally, for any profile 6, the objective is to minimize the
maximum group effect (mge), defined as

mge(, f(0)) = max Ej.
j€lml

We further interpret the maximum group effect E; for each
group j in both utilitarian and egalitarian manners, in-
corporating the group-specific weight w; in both formula-
tions. Specifically, one is termed Weighted Total Group
Cost (WIGC), E; = wj - Ziecj c(f(0),z;), correspond-
ing to the weighted sum of distances from all agents in
group G to their assigned facilities. The other is termed
Weighted Maximum Group Cost (wMGC), i.e., E; = w; -
max;eq, ¢(f(0),;), representing the weighted maximum
distance among agents in group G ;. mge prioritizes fairness
by limiting the worst-case weighted burden among groups,
aligning with principles of equitable resource allocation.

For any strategyproof mechanism, we evaluate the perfor-
mance by the approximation ratio, defined as the worst-
case ratio (over all possible instances) between the maxi-
mum group effect produced by the mechanism and the opti-
mal solution.



Definition 2.2 (Approximation Ratio). For any mechanism
f, the approximation ratio is:

p= sup e, £00)
pcon mge(6,0PT(6))’

where OPT(0) is the optimal facility placement that mini-
mizes mge objective under the profile 6.

In the following sections, we focus on deterministic strat-
egyproof mechanisms that optimize the mge objective. We
begin with the single-facility setting (k = 1) and then extend
our analysis to the multi-facility scenario.

Our Contribution

We advance the field of fair mechanism design in FLGs by
introducing a unified framework that seamlessly integrates
efficiency, individual fairness, and group fairness.

Capturing Fairness Through Generalized Metrics. We
first introduce the general metric termed maximum group ef-
fect (mge), which is defined as mge = max ¢, E;. Here
E; is interpreted either the weighted total group cost (wWTGC),
Le., Ej = w;-) eq, c(f(0), ), or the weighted maximum
group cost (WMGC), i.e., IJ; = w; -max;eq, ¢(f(0),z;). Our
proposed mge objective offers a unified framework for ana-
lyzing efficiency and fairness in facility location problems,
which captures a broad range of objectives by appropriately
adjusting the group partitioning and weight assignments, as
illustrated in Figure 1.

| mtec| | mage | | Max Cost |

| Social Cost |

Figure 1: mge: a generalization of objective metric.

Unified Mechanisms with Tight Approximation Guaran-
tee. 'We propose two novel strategyproof mechanisms: the
BALANCED mechanism and the MAJOR-PHANTOM mech-
anism. The BALANCED mechanism, a flagship contribution
for single-facility location games, not only unifies classic fa-
cility location mechanisms, but also provides tight results
for group-fairness objectives. Specifically, regarding the so-
cial cost objective, the BALANCED mechanism aligns with
the median-point mechanism, while for the maximum cost
objective, it degenerates to the LEFTMOST mechanism. In
the context of group fairness, it achieves 2-approximation
ratios for both maximum total group cost (mtgc) and max-
imum average group cost (magc), closing the bound gap
in (Zhou, Li, and Chan 2022). Furthermore, we prove that
the BALANCED mechanism provides tight bounds for any
weighted total group cost objective. Consequently, this uni-
fication establishes the BALANCED mechanism as a versa-
tile instrument capable of adapting to diverse fairness and

efficiency goals without bespoke designs for objectives. To
optimize the weighted maximum group cost objective, we
introduce the MAJOR-PHANTOM mechanism and show it
provides tight results for this objective.

In the two-facility setting (see Section 4), we revisit the
ENDPOINT mechanism (Procaccia and Tennenholtz 2009),
which places facilities at the leftmost and rightmost agent
locations. For both wTGC and wMGC, we show it achieves
tight bounds. For settings beyond two facilities (k > 2), we
leverage results from Fotakis and Tzamos (2014) to show
that all strategyproof, anonymous, and deterministic mech-
anisms yield unbounded approximation ratios. Our estab-
lished tight approximation ratios and matching lower bounds
are comprehensively summarized in Table 1.

Setting Objectives Mechanisms Bounds
k=1 wTGC BALANCED 2
wMGC MAJOR-PHANTOM 2
k=2 wIGC ENDPOINT 1+ (n — 2)fmax
wMGC ENDPOINT 14 fmax
k>3 General / 00

Table 1: Summary of results. All listed bounds are tight.
Gray shading denotes the contributions of this work.

3 Single-Facility Mechanism Design

We begin by considering single-facility setting (kK = 1).
For the wTGC group effect metric, ie., E; = w; -
> icc, ¢(f(0),x;), we propose the BALANCED mechanism
which places the facility at the location under which the
maximum weighted values are balanced. Regarding the
wMGC objective where E; = w; - max;eq, c(f(0),x;), we
introduce the MAJOR-PHANTOM mechanism, which places
the facility at the median-point of the locations of agents
in the group Gpa.x With the largest weight, together with
(|Gmax| — 1) constant phantom points. For both cases, we
provide tightness results, showing the optimality of the pro-
posed mechanisms.

Weighted Total Group Cost

We first look at the weighted total group cost (wTGC) ob-
jective, where Ej; = wj - > ;e c(f(0), ;). As illus-
trated in Figure 1, the wTGC metric ‘subsumes several well-
studied objectives, including the social cost, maximum cost,
and group-fairness objectives mtgc and magc. To address
this generalized setting, we introduce our first BALANCED
mechanism (Mechanism 1), which places the facility at a lo-
cation that equilibrates the weighted number of agents on
either side of it.

Intuitively, the BALANCED mechanism defines, for each
group j € [m] and location y € R, two functions L;(y)
and R;(y), representing respectively the number of agents
in group j located at or to the left of y, and those located
to its right. Since w;L;(y) is non-decreasing and w; R;(y)
is non-increasing over y € [r1,Z,], the mechanism places
the facility at a location that most closely balances the two



Mechanism 1: BALANCED Mechanism
Input: Agent profile 8, group weights {w; }jc(m-
1: Define L;(y) < |[{i € N :2; < yandj € ¢;}| and
Rj(y) — |{Z eEN:x;,>yandj € gl}l
2: Compute

JE[M] j'€[m]

f(e) <—min{y€ R:maxw;L;(y)> max w; R (y)}

Output: Facility location f(8).

quantities maxc(,,) w; L;(y) and max;cp,,) w;R;(y). The
BALANCED mechanism can be implemented in O((n +
m)logn) time by performing a binary search over the
sorted agent locations to identify the smallest z; satisfying
max;em] wiL;(x;) > max; epy,) wy Rj (x;). Each itera-
tion of the binary search requires evaluating these maximum
functions, which takes O(n + m) time.

Proposition 3.1. The BALANCED mechanism coincides
with the median-point mechanism (resp. leftmost mecha-
nism) when the mge objective degenerates to the social cost
(resp. maximum cost) objective.

We next present the main theorem for the BALANCED
mechanism, which satisfies strategyproofness and achieves
a 2-approximation for minimizing the mge objective when

Ej =wj Y ieq, c(f(8), ;) forall j € [m].

Theorem 3.2. The BALANCED mechanism is strategyproof
and has an approximation ratio of 2 for minimizing mge

when E; = wj - Ziegj c(f(0), ;).

Proof. Strategyproofness. Let f(6) denote the outcome
of the BALANCED mechanism, and consider any agent ¢
with truthful location x;. We prove by discussing the rela-
tive positions of f(0) and x;. Clearly, if z; coincides with
f(@), agent ¢ has no incentive to misreport her location.
Case (1). If z; < f(0), misreporting z; < f(0) will
not change the facility location as L;(f(0)) and R;(f(0))
don’t change for all j € [m]. If agent ¢ misreports to
x; > f(0), we have that L;(f(0)) decreases and R;(f(6))
increases for each j € g;, potentially shifting the fa-
cility location rightward as max; [, {w; R (f(8))} in-
creases while max;ep,,) w;{L;(f(0))} decreases. Conse-
quently, agent ¢’s cost increases as the facility moves farther
from z;, implying that misreporting cannot be beneficial. We
next consider Case (2). If z; > f(0), similarly, when mis-
reporting x; > f(8), the facility location remains at f(6).
When 2} < f(0), by an analogical induction, it could only
potentially pushing the facility location farther away from
agent ¢’s location z;. Hence, we conclude that for any agent
i € N, 7 has no incentive to misreport her location, which
implies the BALANCED mechanism is strategyproof.
Approximation Ratio. Denote by f(6) the BALANCED
mechanism outcome and y* = argmin, g mge(6,y) the
optimal location for profile 8. We begin with a key obser-
vation that underpins the proof of the approximation ra-
tio. Given any profile 8, we construct a modified profile

0’ by relocating all agents whose positions lie between
(@) and y* to the point y*. Under the construction, we
first observe that for each agent ¢ who lies between f(0)
and y*, ¢(f(0),x;) increases while c¢(y*,x;) decreases,
which follows that mge(@’, f(0)) > mge(8, f(0)) and
mge(0’,y*) < mge(8,y*). Let p(0) (resp. p(8")) denote
the approximation ratio under @ (resp. 8). By construction,
we have p(6) < p(8"). Henceforth, we focus exclusively on
profiles involving such movements. For the sake of clarity,
we will abuse the notation 6 to refer to the modified profile.

Case 1: f(6) < y*. For each group G;, the group ef-
fects under f(6) and y* are expressed as E;(f(0)) =
w; Y e, [£(0) — x| and Ej(y™) = w; 3 icq, v° — @il
Viewing E;(y) as a function of location y. its derivative can
be expressed as %y(y) = wj - (—L;(y) + R;(y)). Conse-
quently, we derive that

Bi(160) - Exw) = [y

r(9)

Since there is no agent located in the interval [f(0), y*), the
derivative is a constant value. We further have

E;(f(0))-E;(y") =w;(R;(f(0))-L;(f(8)))-(y*~f(0)).

Recall that mge(8, f(0)) = max e}, £;(f(0)) and
mge(0,y*) = max;epm) F;(y*). We then have

mge(0, f(6)) — mge(0,y")
< }Qﬁf}{Ej(f(a)) - E;j(y")}
< m%{wy‘(ﬁ’j(f(@)) — L;i(f(8))(y" — f(6))}.

JE[

On the other hand, there are L;( f(8)) agents in each group
Gj who are at or on the left of f(0). It follows that

mge(6,y") > ;2%{% L (f(0))} - (y* — £(8)).

Moreover, we have max;cpm{w;R;(f(0))} <
maxem){w;L;(f(0))} as f(#) is the outcome by
BALANCED mechanism. With these inequalities in hand,
we derive the approximation ratio p of the BALANCED
mechanism.

= =1+

mge(6,y*) mge(6,y*)
max;em){w; (R;(f(9)) — L;i(£(9)))}(y" — f(9))

max;c ] {w; L;(f(0))}(y*— f())

max;efm {w; B (f(0)} _
max;epm){w; L; (f(0))} ~
Case 2: When f(0) > y*. Keep in mind that we still have
the derivative expression for function Ej;(y). Observe that
in the interval [y*, f(0)), the derivative of function E; (y) is
a constant value as there is no agent in the interval. By an
analogous approach, we have

Ei(f(0)) = E;(y") =w;(R;(y*) — L;(y")) - (f(0) —y").

<1+

<1+




We next establish the group effect difference between solu-
tion f(0) and y*.

mge(ev f(e)) - mge(ev y*)
< maX{Ej(f(O)) - Ei(y")}

< jfrelﬁff]{w]( Ri(y") = L;(y"))(y" — f(0))}-
Since we know that there is no agent in the interval
(y*, f(@)), then for all the agents on the right of y*,
they must satisfy x; > f(@). Therefore, we can bound
mge(6, y”) by
mge(6,y") = max{w; - F;(y")} - (£(6) = 7).

Based on the aforementioned analysis, we derive the approx-
imation ratio

_ mge(6, f(8))

- mge(8,y%)

max;em {w; (R (y") — L;(y"))}(f(8) —y")
max;em) {w; - R;(y*)}(f(6) —y*)

max;em) {w; R;(y")}

max;e ) {w; R;(y*)}

Combining the analyses of both cases, we conclude that the

BALANCED mechanism achieves an approximation ratio of
2 for minimizing the maximum group effect when E;, =

Wy - Ziecj c(f(0), ;). O

Since mge generalizes the maximum cost objective when
m = n and G; = {j} with equal weights, the lower bound
from Procaccia and Tennenholtz (2009) applies, confirming
the tightness of BALANCED ’s approximation ratio.

Corollary 3.3 (Procaccia and Tennenholtz 2009). Any de-
terministic mechanism has an approximation ratio of at least

2 for mge when E; = w; - Zz‘eGj c(f(0),x;).

Note that mge also generalizes the group-fairness ob-
jectives mtgc and magc proposed by Zhou, Li, and Chan
(2022) for which the approximation ratios remained an
open question, with a 3-approximation upper bound and a
2-approximation lower bound. Our proposed BALANCED
mechanism now closes the gap.

Corollary 3.4. The BALANCED mechanism achieves a 2-
approximation ratio w.r.t. the mtgc and magc objectives.

<1+

<1+ =2

Weighted Maximum Group Cost

We next turn to the weighted maximum group cost objec-
tive, wherein E; = w; - maxeq; c(f(0), ;). Intuitively,
it is a weighted maximum cost problem where each agent
1 is assigned with a maximum weight wy, = max;cy, w;,
and the objective is to minimize the maximum value of
wg, - ¢(f(0),x;) over all agents ¢ € N. In view of this, we
propose the MAJOR-PHANTOM mechanism (Mechanism 2)
which selects the facility location by prioritizing the group
with the largest weight w;.

MAJOR-PHANTOM mechanism extends the PHANTOM
mechanisms (Moulin 1980) by prioritizing agents in the

Mechanism 2: MAJOR-PHANTOM Mechanism
Input: Agent profile 8, group weights {w; }j[m-
1: Let Gmax denote the largest weight group and x“max =
{afmex ,xG"‘a" ‘} denote the location proﬁle of

agents in G, tle breaklng in favor of the smallest index.

2: Letvg < -++ < g, -1 denote [Grax| — 1 values
U1 S e Slemaxlfl'
3 f(0) <+ median(xCm vy, vi6,0 —1)  tie-

breaking by selecting the leftmost.
Output: Facility location f(6).

largest-weighted group, thereby ensuring fairness for groups
with greater importance. Before analyzing the approxima-
tion ratio of the MAJOR-PHANTOM mechanism with respect
to the wMGC objective, we first provide a characterization of
the optimal solution in two-agent instances, which will fa-
cilitate the subsequent analysis.

Lemma 3.5. Given two-agent profile 0 and optimal solution
y*, for any two agents with locations ©1 < x5 and maxi-
mum weights wg, ,wy, > 0, mge(0,y*) = max;cm) w; -
maxeq, |y* — 4| is either

o wy. - B2 ywhen g1 = go with the maximum weight
g1 2
wg,, achieved at y* = 122 or
Wy, Wgy (T2 —21) . *
M = when wg, # wg,, achieved at y* =
Wy, T2F+Wgy T1
Wgy twWg,

We next prove that for any MAJOR-PHANTOM mecha-
nism, it is strategyproof and achieves an approximation ratio
of 2 for minimizing mge under the wMGC objective.

Theorem 3.6. Any MAJOR-PHANTOM mechanism is strat-
egyproof and has an approximation ratio of 2 for minimizing
the mge objective when E; = w; - max;eq, c(f(0), ;).

Proof. Strategyproofness. Given any agent profile 6, con-
sider an agent 7 € N with true location z;. If i ¢ Guax, it is
clear that misreporting cannot influence the facility location
under the mechanism. If i € G,.x, then since group mem-
bership cannot be misreported, we can apply a similar ana-
Iytical approach to that used in the proof of strategyproof-
ness for PHANTOM mechanisms by Moulin (1980).

Approximation Ratio. Given any profile 6, let f(0) de-
note the location outputted by the MAJOR-PHANTOM mech-
anism and y* denote the optimal location under 6.

We first consider the case that y* > f(0). Suppose that
mge(0, f(0)) is achieved by agent £. We first observe that if
xy < f(6), we have mge(0, f(0)) = wy, - (f(60) — x¢) and
mge(0, y*) > wy, - (y* — x¢), which gives us

_ mge(0,£(0) _ wy, (FO) —we) _

mge(0, y*) wy, - (y* — x¢)

If z, > f(0), let k € Gpnax be the agent in group Gax
whose location zj, satisfies z, = minjeq,,.. |z; — f(0)]
with the additional condition that xy, < f(@). That is, xy is



the closest agent to the left of f(8) within G,ax'. We claim
that such an agent k£ always exists. Toward this end, sup-
pose, for the sake of contradiction, that no such xj, exists. It

implies that all the agents’ locations {25= .. ,xféfﬂ;l}

lie strictly to the right of f(8), i.c., z5™> > f(8) for all
1 € Gmax. However, under the MAJOR-PHANTOM mech-
anism, the facility is placed at the median of the multiset
{xCmax vy, 0G| —1 ) Which has a size of 2+|Grnax
1. In this case, there can be at most |G x| — 1 points strictly
to the right of f(@), contradicting the assumption. There-
fore, such an agent k always exists.

If 2, < f(0) < xz¢ < y*, we have mge(0, f(6))
Wy, - (.’ﬂg - f(a)) < Wy, - (:El - l’k) and mge(aay*) =
wg, - (Yy* —x1) > wy, - (x¢ —x1). Hence, the approximation
ratio is expressed as

o mge(ea f(e)) < Wg, - ((L‘g - xk) o %
mge(0,y*) ~ Wg,, - (z¢ — ) Wgy, .
Recall the definition of MAJOR-PHANTOM mechanism. We
know that p < i’—jﬁ = % < laswg, = Wnmax > Wy,

If 2, < f(8) < y* < x4, we have mge(8, f(0)) =
wy, - (xe — f(0)) < wy, - (x¢ — x). By Lemma 3.5,
when only considering agent k and ¢, we have the maximum
cost achieved by these two agents is at least %&;ﬁm

ge 9k
Wy, Wy, (ze—zk)
. . . . ng+wgk
quently, the approximation ratio is bounded by

Vol

Hence, we have mge(0,y*) > . Conse-

_ mge(07 f(a)) Wg, - (:L’g - xk) _ Wq, + Wy,
mge(0,y*) T WaWe (@e—zk) wg,
Wy, +Wg,
Wy, +Wg, —

Since wg, = Wmax > Wgy,, it follows that p =

’Lng
% < 2. For the case where y* < f(6), the same
approximation ratio of 2 can be established by applying an

analogous analysis to that used for the case f(0) > y*. O

Notice that the mge objective coincides with the maxi-
mum cost objective when m = n and G; = {j} with equal
weights. In this case, the lower bound of 2 for the maxi-
mum cost objective established by Procaccia and Tennen-
holtz (2009) applies, thereby confirming the tightness of the
bounds achieved by the MAJOR-PHANTOM mechanism.

Corollary 3.7 (Procaccia and Tennenholtz 2009). Any de-
terministic, strategyproof mechanism has an approxima-
tion ratio of at least 2 for mge when E; = wj -

max;eq; c(f(0), ).

4 Multi-Facility Mechanism Analysis

In this section, we extend our analysis from single-facility
to multi-facility settings. In view of the impossibility result
of Fotakis and Tzamos (2014), which shows that for £ > 3,
no deterministic, anonymous, and strategyproof mechanism
can achieve a bounded approximation ratio for either the so-
cial cost or maximum cost objectives, our primary focus is
on the two-facility case (k = 2).

'If multiple agents satisfy this condition, we break ties by se-
lecting the agent with the largest index k.

Corollary 4.1. When k > 3, there is no determinis-
tic, anonymous, strategyproof mechanisms with a bounded
approximation ratio for mge, for either E; = w; -
>ica, c(f(0), ;) or Ej = w; - maxieq, c(f(0), ).

We next restrict our attention to the case of £k = 2
and revisit the ENDPOINT mechanism (placing facilities
at the leftmost and rightmost agent locations), which re-
mains the only known deterministic, anonymous, and strat-
egyproof mechanism with bounded approximation guaran-
tees for these objectives (Fotakis and Tzamos 2014).

While Fotakis and Tzamos (2014) established that the
ENDPOINT mechanism is the only deterministic, anony-
mous, and strategyproof mechanism with bounded approxi-
mation guarantees for social cost in the two-facility setting
(k = 2), evaluating its performance under our group-centric
mge objective presents a novel and nontrivial challenge. Un-
like classical objectives, the mge objective requires account-
ing for weighted group effects, where both the group struc-
tures and the distribution of group weights play a critical
role, which demand a fundamentally different analytical ap-
proach. Our contribution lies in establishing tight approxi-
mation bounds for the ENDPOINT mechanism under mge,
thereby extending its applicability to equitable facility place-
ment and offering theoretical insights into group fairness.

Weighted Total Group Cost

We first explore the maximum group effect objective by con-
sidering the weighted total group cost (wTGC). Our result
shows that the ENDPOINT mechanism achieves an approxi-
mation ratio of 1 + (n — 2) - Wmax,

Wmin
Theorem 4.2. The ENDPOINT mechanism has an approxi-
mation ratio of 1 + (n — 2)¥max for minimizing mge when

Wmin

Bj =wj- Yicg, c(f(0),2:).

Proof. Given any agent profile 6, let Y = (x1,x,) de-
note the outputs of the ENDPOINT mechanism and Y* =
(y1,v3) (wlo.g, y;7 < y3) denote the optimal facility loca-
tions which achieves optimal mge(0,Y ™). We first observe
that z; < yi < y3 < z,. For any group G/, suppose there
are ki agents (excluding agent 1) who are assigned to facil-
ity y7 while k2 agents (excluding agent n) assigned to facil-
ity y32. Now we consider the follow movement, moving one
facility from yj to x; and the other facility from y3 to z,,.
For group G, after the movement, the changes of the group
effect is expressed as

Ej(Y) = B;(V") < w; ((yi = @1) + Ky(wn — )

< wj(k{ + k‘%) ‘max{y] — x1,Tn — Y5}
<wj(n —2) max{y; —x1,Tn — Y5}

Recall that wyax = max; w; and Wpix = min; w;. Now
we consider the mge objective and have

mge(6,Y) — mge(6,Y”) < }Iel[%(Ej(Y) - E;(Y"))

Swmax'(n_2)'max{y>1k _xluxn_y;}' (1)

Breaking ties by assigning to y}



On the other hand, since there exists at least one agent who
is assigned to each facility under the optimal solution Y*,
we have the lower bound that

mge(0,Y™) > max{wy, (y7 — =

1), Wy, (Tn —y3)}
> Winin - Max{y; — 1,20 — Y3} (2)
From Equation (1) and Equation (2), we derive the upper
bound of the approximation ratio p
mge(0,Y) - (n — 2)Wmax max {yF — a1, 2, — Y3}
mge(6,Y*) = max{wg, (y] — z1), wy, (Tn —y3)}
(n - 2)wmax -Inax {yf — L1, Tpn — y;}
Wmin Max {y{ —X1,Tp — y;}

<1+ (n — 2)Ymax

<1+

Wmin
To show the tightness, consider an instance with n agents
where 21 = 0,2 = 13 = -+ = 2,1 = 3, and x,, = 1,
and G; = {1}, G = {2,3,...,n}. For group weights,
let wi = wWpin and wy = Wpax. We first observe the op-

timal solution Y* = (y7 = 2[1Um1::n:’z):1:(27)172)]7y§ = 1),

Wrnin Wmax (N—2
D amnn e (n—2)] - 11 CONLEAst,

the ENDPOINT mechanism has an mge of W This
gives us an approximation ratio of 1 4 (n — 2) - Zmex_ []

min

achieving mge(0,Y™*) =

We adapt the characterization of Fotakis and Tzamos
(2014), which identifies the ENDPOINT mechanism as the
unique deterministic, anonymous, and strategyproof mecha-
nism with bounded approximation ratio for £ = 2, to estab-
lish the tightness.

Proposition 4.3. Any deterministic, strategyproof mecha-
nism has an approximation ratio of at least 1+ (n—2) - %max

when E; = wj - ZieGj c(f(0),x;).

Weighted Maximum Group Cost

We now turn to the weighted maximum group cost (wMGC)
objective. Under this criterion, the ENDPOINT mechanism
attains an approximation ratio of (1 + mex),

Theorem 4.4. The ENDPOINT mechanism has an approx-
imation ratio of 1 + ﬁma" Sfor minimizing mge when E; =
wj - maxeq; c(f(0), ;).

Proof. Given any agent profile 8, Denote by Y = (1, )
the outputs of the ENDPOINT mechanism and Y* =
(y5,93) (7 < y3) the optimal facility placement which
achieves optimal mge(6,Y*). We first observe that z; <
yi < y; < x,. Without loss of generality, assume
mge(0,Y") is achieved by agent k and x; < %, ie.,
k is assigned to facility located at =1 under Y.

Case 1. When z; < z;, < yj, we have mge(0,Y) =
wg, (xx — x1) and mge(0,Y™*) > wy, (y7 — x1). The ap-
proximation ratio p is upper-bounded by

mge(6,Y)
mge(0,Y*) ~

< wgk'(xk - xl) < Wmax

o wgl'(xk - 3)1) Wmin .

Wy, (T — 1)
wgl.(yT - xl)

Case 2. When y7 < x; < y; and k is assigned to y7.
Wy Wy (z—z1)
wgy Wy,

the approximation ratio p is upper-bounded by
mge(0,Y)  wg, - (xr — 9:1)
mge(07y*) — wgywg, (Tp—T1) —
Wgy TWg,,
Case 3. When yi < zp < y5 and agent k is as-
signed to y3. Similarly, we can lower-bound mge(8,Y™*) >

Lo Won (T Zk) Recall that xp < “Ea It implies that
Wg, +Wgy, 2

T — 1 < T, — Tk. SO we have the lower bound for the

approximation ratio p that
mge(0,Y) < Wy - (z —
mge(0,Y*) —

By Lemma 3.5, we have mge(0,Y™*) > and

Wmax

<1 Do <y Dmax
wgl wmln

w
) < 1 + gk < 1 + max
Woy Wop, (Tn—Tk) Wy
ka +w9n
Case 4. When y5 < z;, < z,. In this case, agent k is
assigned to the facility located at y5. Hence we derive that

mge(0,Y™*) > w,(x, — y3). Consequently, the approxima-

tion ratio p satisfies p = r:gie((egg )) < T ((;k I*l)) Note that

we also have xy, — 1 < x, — z and z,, — Y5 > T, — Tk
Therefore, we bound the approximation ratio p by

mge(0.Y)  wg,-(xr — 1) _ wg,(Tn — k) < Wmax
mge(97Y*) o wvz'(xn - y;) N wn'(xn - xk) ~ Wmin
Combining the analysis across all four cases, we conclude
that the ENDPOINT mechanism achieves an approxima-
tion ratio of 1 + max. To establish the tightness of this
bound, consider the followmg instance. There are n agents
where z1 = 29 = -+ = 9 = 0, 21 = 1, and
Zn = 1. The group structure is given by G {1},
and G2 = {2,3,...,n} with weights w1 = wp,, and
Wy = Wpax. We first identify that the optimal solution is
V' = (4] = gis—ys = 1), achieving an mge
2(w:2f$dtx) In contrast, the ENDPOINT mecha-
nism attains an mge value of “%52, implying that it has an
approximation ratio of 1 4 Zmex, O

min

n wmm

value of

Proposition 4.5. Any deterministic, strategyproof mecha-
nism has an approximation ratio of at least 1 + 7™ when

Ej = wj - maxieq, c(f(0), ;).

5 Conclusion and Discussion

We study facility location games through the lens of fair-
ness by introducing a unified framework based on the maxi-
mum group effect, a general metric that encompasses a broad
class of classical objectives. In the single-facility setting,
we develop two strategyproof mechanisms, BALANCED and
MAJOR-PHANTOM, both of which achieve tight approxima-
tion guarantees for minimizing the maximum group effect.
Our results further close the open approximation gaps for
group-fairness objectives identified by Zhou, Li, and Chan
(2022). In the two-facility setting, we revisit the classical
ENDPOINT mechanism and establish tight approximation
bounds. Looking forward, promising research directions in-
clude extending our framework to randomized mechanisms
to circumvent the impossibility of achieving bounded ap-
proximations for k > 3, as well as adapting the mge ob-
jective to higher dimensional metric spaces.
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